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Abstract

For Parkinson’s disease cell replacement therapy, dopami-
nergic neural cells can be employed (PD). When neural cell 
death in the brain causes a decrease in dopamine release, 
PD is the result. Therefore, it is thought that replacing neural 
cells in the brain from the outside may increase dopamine 
levels, which will help to reduce the symptoms of Parkin-
son’s disease. According to a recent analysis by Chakraborty 
and Diwan, neural stem cells (NSCs) are a better option 
than many other cells that can be considered for the same 
reasons. These hNSC cells also prevent any future dopa-
mine-related issues, including as dyskinesia and motor neu-
ron defects in the person, thanks to their mechanisms for 
maintaining the controlled level of dopamine. NSCs, howev-
er, senescence occurs after very sluggish growth few passes, 
hence it might not be possible to collect a large number of 
cells for the treatment of several PD patients. Here, we’ll talk 
about a potential way to alter cells to improve their capacity 
for dopamine production, growth, and survival. Cell-Cell in-
teractions are frequently known to change the cells and can 
be taken into account for the aforementioned goal.
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Introduction 

Dopaminergic Parkinson’s disease (PD) is ultimately brought 
on by the death of neurons in the Substantia Nigra (SN) 
area of the brain [1,2]. The number of PD cases worldwide 
is significantly rising [3]. There are now no such curative 
treatments available, only some palliative ones such 
supplementing with DOPA, a precursor to dopamine [4]. 
Long-term DOPA supplement use, however, may result in 
dyskinesia, motor neuron damage, etc. [5]. The use of neural 
stem cells (NSCs), induced pluripotent stem cells (iPSCs), 

and other DOPA-producing cells including melanocytes 
as a cell therapy regiment for PD treatment has recently 
come under consideration [6,7]. However, hNSCs for PD cell 
treatment have been supported by a number of evidences in 
a recent study by Chakraborty and Diwan (2019) [8].In short, 
hNSCs can effectively regulate the physiologic level of that 
neurotransmitter since they are endowed with both Tyrosine 
hydroxylase, a critical rate-limiting enzyme for Dopamine 
synthesis, and its scavenging enzymes (DAT and MAO-B) [9]. 
As a result, cell therapy for Parkinson’s disease using human 
neural stem cells (hNSCs) should be preferable to levodopa 
therapy itself since it eliminates the risk of developing 
dyskinesia or a motor neuron deficiency in the long term.
Additionally, hNSCs have the capacity to create glial-cell 
derived neural factors (GDNF) and brain-derived neural 
factors (BDNF), which can have an autocrine effect on hNSC 
development and dopamine production[10–12].
However, hNSCs have a poor rate of growth and enter 
senescence after a few passages, leaving little cell supply 
for therapeutic purposes [13].Mobility, endocrine control, 
heart health, and so forth. Dopamine serves as the main 
precursor of the sympathetic nervous system’s adrenaline 
neurotransmitter in the periphery, while noradrenaline serves 
as the adrenomedullary hormone. Tyrosine hydroxylase 
(TH) in dopamine-producing cells converts tyrosine to 
dihydroxyphenylalanine (DOPA), which is then decarboxylated 
to produce dopamine. Five different dopamine receptor types, 
D1 and D5, form couples with the Gs class of G proteins, which 
can stimulate cAMP formation, while D2, D3, and D4 form 
couples with the Gi class of G proteins, which can cause a 
decrease in intracellular cAMP formation [36, 37]. Additionally, 
TH is activated by cAMP [36, 37].

Dopamine, which is released by leukocytes and has both 
autocrine and paracrine immune modulatory effects. 
Forskolin, a cAMP inducer, has been shown to increase 
dopamine synthesis and storage in monocyte-derived 
dendritic cells (Mo-DCs) [38]. Dopamine also promotes T-cell 
differentiation to Th2 and increases cAMP levels in naive CD41 
T cells via D1-receptors.DARPP32kDa, a dopamine- and cAMP-
regulated phosphoprotein, is phosphorylated at a higher level 
in the lesioned striatum in the hemi Parkinsonian rat model. 
DARPP-32, a key player in dopamine signalling, prevents 
PKA-targeted proteins from being dephosphorylated while 
sustaining D1DR-mediated signalling [39,40].
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Discussion

More than 200 different types of cells are thought to make 
up the human body. Specialized cells coordinate their 
behaviour through communication with other cells to form 
functional units including organs (brain, heart, liver, etc.), 
skin, bone, blood, and muscle.
A single cell can connect with many other cells by physical 
contact, surface receptor-ligand interaction, cellular 
junctions, and secretory stimulation from nearby cells or 
those of distant organs. Cell-cell interaction is a complex 
process. Extensive research has been done on interactions 
involving factors that are secreted, such as growth factors 
and cytokines that are protein- or peptide-based, small 
molecules, and metabolites.
Extracellular vesicle contacts have recently become 
another type of interaction. Additionally, the physiological 
surroundings of cells, including the extracellular matrix’s 
physical characteristics and its biochemical characteristics, 
such as oxygen levels (hypoxia) or nutrition, have an 
impact on how cells interact with one another (energy 
deprivation). Lipoxin (LX) biosynthesis is an illustration of 
LO-LO (lipoxygenases) interactions via transcellular circuits 
in people and other mammalian systems. Because LXs are a 
distinct type of local mediators made from arachidonic acid, 
they have unique and powerful biological functions [31].
Together, it seems that cell-cell interaction can support 
complicated biological processes in tissues, such as 
neurotransmission, embryonic development, wound healing, 
inflammation, etc., as well as coordinated cellular behaviour.
Parkinson’s disease (PD) is a neurological condition that 
affects older adults and is characterised by tremor that 
appears gradually, delayed mobility, and cognitive decline. 
Parkinson’s disease is sporadic and has no known cause. Its 
molecular hallmarks include the death of neuronal cells in 
the subatantia nigra (SN) region of the brain. It is anticipated 
that a modified neural cells transplant in the brain will be a 
curative method.

Conclusion

Together, it appears that cell-cell interaction can enable 
coordinated cellular behaviour as well as complex biological 
processes in tissues like neurotransmission, embryonic 
development, wound healing, and inflammation.
Parkinson’s disease (PD) is a neurological disorder that 
mostly affects older persons. It is characterised by gradual 
tremor development, delayed movement, and cognitive 
impairment. There is no known aetiology for Parkinson’s 
disease, which is sporadic. The death of neuronal cells in the 
subatantia nigra (SN) area of the brain is one of its chemical 
characteristics. A modified neural cell transplant in the brain 

is expected to be a curative procedure.
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